Convective Heat System Preserves Sexual Function While Treating LUTS and BPH

"Thermal Therapy" has the potential to provide an effective alternative treatment option for patients

SAN DIEGO, May 8, 2016 /PRNewswire-USNewswire/ -- Treatment of lower urinary tract symptoms (LUTS), due to benign prostatic hyperplasia (BPH), using convective water vapor thermal energy provides rapid and durable improvement of symptoms while preserving sexual function, according to a new study featured at the 111th Annual Scientific Meeting of the American Urological Association (AUA). The research will be highlighted by study authors during a special press conference on May 8, 2016 at 10:15 a.m. PT in the San Diego Convention Center. Tobias S. Köhler, MD, MPH, FACS, AUA spokesperson and associate professor of Surgery at Southern Illinois University, will moderate the session.

LUTS is a term used to describe a range of symptoms related to problems of the lower urinary tract (bladder, prostate and urethra). Symptoms can include frequent, urgent or painful urination. BPH is a localized, enlargement of the prostate gland. Symptomatic BPH is often recognized as including the presence of LUTS. BPH affects approximately half of the male population between 51-60 years old and 75 percent of men over the age of 65. Conservation of sexual function is a fundamental quality of life issue for men contemplating a treatment option for LUTS/BPH. Current treatment options range from medical management to surgical intervention; however, alternative treatment options for BPH patients who are unable to undergo surgery or who are dissatisfied with their medical management are limited, until now.
Study Details

Publication Number: PD21-04

In this randomized controlled trial, researchers set out to examine the results associated with the use of convective water vapor energy ablation "thermal therapy" to treat BPH, as well as the impact the treatment has on a patient’s sexual function. "Thermal therapy" is a minimally invasive treatment option that applies radiofrequency power to create water vapor thermal energy. This power delivers targeted and precise doses of stored thermal energy treatments directly to the region of the prostate gland mitigating obstructive prostate tissue associated with BPH and providing improvements in LUTS symptoms.

Results showed:

- Improvement of International Prostate Symptom Score (IPSS) of 11 points at month three, which 96 percent of patients sustained through year one
- Sexual function, as reported by the International Index of Erectile Function (IIEF-EF) and the Male Sexual Health Questionnaire for Ejaculatory Dysfunction (MSHQ-EjD), showed no clinically significant changes in erectile and ejaculatory function (IIEF-EF baseline man was 17.2 and the MSHQ-Ejd mean was 7.8)
- Modest decreases in ejaculatory volume occurred in 4.4 percent of men and anejaculation in 2.9 percent of men
- No new cases of erectile dysfunction were reported

"BPH and LUTS are highly prevalent conditions and can significantly impact a man's quality of life," said Dr. Köhler. "This study shows that using convective water vapor energy might be a viable option in treating BPH while minimizing sexual side effects of treatment."
About the American Urological Association: The 111th Annual Scientific Meeting of the American Urological Association takes place May 6-10, 2016 at the San Diego Convention Center in California. Founded in 1902 and headquartered near Baltimore, Maryland, the American Urological Association is a leading advocate for the specialty of urology, and has more than 21,000 members throughout the world. The AUA is a premier urologic association, providing invaluable support to the urologic community as it pursues its mission of fostering the highest standards of urologic care through education, research and the formulation of health policy.

Contact:
Christine Frey, AUA
443-909-0839, cfrey@AUAnet.org

SOURCE American Urological Association

Related Links
http://www.AUAnet.org

Find this article at:

☐ Check the box to include the list of links referenced in the article.